Understand a Backdraft

In today’s society firefighters are responding to fires during the later stage of the fully developed stage or at beginning of the decaying stage of fire. This is to no fault of our own, in which multiple factors go into this such as time of day, traffic, faulty fire alarms systems or lack thereof, etc., but understanding the risk of responding to fires as this stage and the vital role we play by knowing fire behavior and knowing the effects of what happens at each stage of fire growth. In this stage, we as firefighters are at an inherent risk of responding to confined fires deprived of oxygen and without proper ventilation and coordination, we are adding to the problem rather than making it better. One of the biggest risk we run into is called a backdraft. A backdraft, also known as a smoke explosion NFPA 921: Guide for Fire & Explosion Investigations, 2011 Edition as, “A deflagration resulting from the sudden introduction of air into a confined space containing oxygen-deficient products of incomplete combustion.” 

So let’s talk now about the science of a backdraft. In decaying stage burning is incomplete because of the lack of oxygen feeding the fire, causing the fire to smolder or burn out. Nonetheless, the heat released from the fully developed state still remains and all flammable products of combustion are waiting for an introduction to oxygen so they can instantaneously combust in the room. We as trained firefighters can prevent this act from happening through proper ventilation. By doing so properly and in a timely manner, the upper areas in the room will be cleared from smoke and unburned gases which is done at the highest point possible. Coincidentally, if this is improperly done, the same unburned gases and other products of combustion are now at a higher risk to instantaneously combust once oxygen is introduced to the room causing a devastating effect on the structure and those in and around it. It is to be known that it only takes 25% of the space in a room or fire area to cause a backdraft to occur. 
With this being said there are certain warning signs that can be seen to indicate if a backdraft appears emanate:

• Black smoke becoming dense, greyish yellow

• Confinement and excessive heat

• Little or no visible flame

• Smoke leaving the building in puffs and being drawn back in

• Smoke stained and/or rattling windows

• Muffled sounds

• Sudden, rapid movement of air and smoke inward when an opening is made
Now that we have discussed the science of a backdraft, let us now discuss how we can safely manage this type of situation.

Ventilation

Vertical ventilation is possibly the best and most effective method of venting a structure showing signs of a backdraft. This will allow for the superheated gases to escape without introducing an excessive amount of oxygen into the structure. Should an explosion still occur during vertical vent, the force will be directed up and away from the vent crew that created the opening (roof cuts, skylight pops, etc.). Should vertical ventilation not be possible for us, horizontal ventilation is a consideration. This could be done using pike poles 6 feet or greater and positioning yourself near the corner of the building and moving all companies out of the “hot zone” or collapse zone. 

Quenching

Another method would be to quench the gases. This is done before we enter the room where the superheated gases were present. A few short blasts of water to the ceiling (also known as penciling) will provide enough cooling to stop an explosion from occurring. By doing this, we are controlling the heat release rate (HHR) and if we can control the heat release rate we can control the fire. 

Flanking

If vertical vent and quenching not be an option, we could consider flanking the fire. To flank the fire, we should position engine company crews at the sides of the doorway and cool the room (compartment) with their hose streams. When doing this, make sure to not cross hose streams and take note of the windows in the room, if possible. A psi pressure of a mere 0.5 will blow windows out.  

Let’s all take this and answer these questions next time we are working on the fire ground.

What do you see upon arrival as the initial Incident Commander or first due Engine Company? 

What significance do these observations tell us about the fire conditions?

What's is the smoke telling us? 

What would be your actions?

Until next time; work hard, stay safe and live inspired.  

About the Author

NICHOLAS J. HIGGINS is a firefighter with 14 years of service all within departments in Piscataway, NJ. Nick has held the ranks of Lieutenant and Captain as well as being a township elected District Fire Commissioner for 1 term (3 years) in Piscataway, NJ. He is also a NJ State certified level 2 fire instructor. He holds a B.S. in Accounting from Kean University working in Corporate Taxation and is the founder/contributor of the Firehouse Tribune website.

The Halligan & its Mechanical Advantages for Forcible Entry

The most used and go to tool in the fire service as we all know is the Halligan. The Halligan as we know is used for “everything” from forcing a door to searching a room, making purchase points in vehicle extrication to wall breaches and clearing windows for ventilation or a possible egress. You name it and a Halligan bar will probably be a tool of choice for any job on the fire ground, if not the tool of choice. Every apparatus has one or more on them for a reason, so it’s best we know not only what it’s used for but also know the bar.

Being able to use a Halligan for multiple purposes on the fire ground is wonderful but knowing the dimensions of the Halligan can offer firefighters more of an advantage when using the tool especially during forcible entry.  

But first let’s start with the bar’s history.

The Halligan was invented by Deputy Chief Hugh A. Halligan of the FDNY in the 1940s. Hugh Halligan was first appointed chief of the FDNY on June 16, 1916. Prior to the Halligan, the tools of choice or its predecessors as we could call it were the Claw tool and the Kelly tool. The Claw tool was considered one of the FDNY’s first forcible entry tools. The downside to this tool was its weight and the off-centered striking surface that made it dangerous for the firefighter holding the tool as it was being driven into a door.

The next tool was choice was the Kelly tool which was developed by the then captain of Ladder Company 163, John Kelly. Unlike the Claw tool, the Kelly tools striking surface was inline with the bar and had a 90 degree flat surface (adze end). Similarly to Claw tool, the Kelly tool was also welded and still heavy and due to both tools specific advantages, both were to be used during fire ground operations.

This is where Chief Halligan came in and wanted to develop a tool that could be held in one hand, wouldn’t break or crack and would not fatigue a firefighter while using it. This was the birth of the Halligan bar. The bar was made of cross-drop forged from one piece of No. 4140 high carbon content steel. As soon as the tool was available on the market it was a huge success that the Boston Fire Department was one of the first departments to place a Halligan bar on every ladder company in the department.

Today most of us use the modern take on the Halligan or the Pro Bar as it is called, which is the one tool that has stayed most true to original specs of the Halligan bar. It is fabricated from one piece of drop forged steel and measures 30 inches in length. The forks have a tapered V shape of space between them along with a gradual curve for leverage when prying. The adze end and pick also have a gradual curve for more of an advantage as well.

The dimensions of the Halligan bar

A standard Halligan is 30 inches in overall length. It consists of an adze end, a pick and a fork (or claw). The fork is 6 inches in length and the crotch of the fork is 5 inches – this is key for conventional forcible entry. The adze end is also 6 inches in length and 2 inches wide. The pick is 6 inches in length and the adze/pick triangle is 5 inches tall.  

Now that we know the dimensions of the Halligan bar, how will this help us in forcible entry?

Using the Adze end

More often than not when dealing with outward swinging doors, we will look to gap, crush or tunnel the door between the door (above the lock) and the jamb using the adze end of the Halligan in doing so and moving the tool up or down offering a 15:1 mechanical advantage with a maximum spread of 2 inches (width of the adze). The 15:1 MA is from the 30 inch Halligan bar and the 2 inch adze end of the bar. When forcing an outward swinging door it is advantageous to pry down on left side opening doors and pry up on right side opening doors. The key is to roll up in the direction opposite the pick to gain maximum leverage.

Forcing inward swinging doors is done in the same fashion as outward swinging doors except the Halligan is used in a different position yet the mechanical advantages will remain the same.

Using the adze end is similar to a class I lever. This is where the fulcrum placed between the effort and load. The movement of the load is in the opposite direction of the movement of the effort and the most typical lever configuration. Fulcrum or pivot point is the point on which an object balances or turns.

Using the Fork

When driving the fork between the door and the frame, the fork should be driven 3 inches past the edge of the door frame creating fulcrum. This will put our load on the Halligan at the 5 inch mark (the length of the crotch of the Halligan) at the door jamb, resulting in a load to fulcrum length of 2 inches. The more we drive our Halligan into the jamb the less we of a mechanical advantage we have when using the tool.

Using the fork is similar to a class II lever. This is where the load is between the effort and the fulcrum. In this, the movement of the load is in the same direction as the effort.

Work hard, stay safe and live inspired. 

About the Author

NICHOLAS J. HIGGINS is a firefighter with 14 years of service all within departments in Piscataway, NJ. Nick has held the ranks of Lieutenant and Captain as well as being a township elected District Fire Commissioner for 1 term (3 years) in Piscataway, NJ. He is also a NJ State certified level 2 fire instructor. He holds a B.S. in Accounting from Kean University working in Corporate Taxation and is the founder/contributor of the Firehouse Tribune website.