Electric Vehicle Fire Considerations for Second Due Company Response

Due to the nature and potential duration of a fire involving an electric vehicle, the second due company, whether it be a rescue or squad company play a vital role in the strategies and tactics of fire suppression operations.

Here are a few considerations for second due companies in response to an electric car fire.

  • Upon arrival and not completed, establish a delineated Hot Zone and ensure all personnel are in full PPE and donned with their SCBA and on air.

  • Consider ventilation. The buildup of vapors from an EV are potentially toxic, flammable and explosive. If deemed safe, the second due engine should consider and attempt to open two doors of the vehicle to allow and prevent buildup of vapors.

  • Attempt to shut down the high voltage system of the EV, if it is not already on fire.

  • Provide access for the suppression team to the location of the battery in order for water to be applied directly on it. This will help cool the battery and prevent thermal runaway.

  • Ways to open the vehicle for access to the battery depending its location

    • Remove the doors and rear seat top

    • Open and remove the trunk lid

    • Tilt the vehicle for access to the floor batteries. Consider using air bags, spreaders and cribbing, a comealong or winch to do so.

The main purpose of the second due company for electric vehicle fires is to provide safety for all personnel on scene and work in obtaining access to the EV battery location to help prevent further thermal runaway. Since cooling these batteries could take up to 30 minutes or more, it is vital there is a dedicated company on scene working to identifying and gaining access to this crucial piece of the vehicle.

Key Terms

High Voltage

For automotive applications, any voltage greater than 30 volts alternating current, or AC, or 60 volts direct current, or DC, is considered to be a high or hazardous voltage due to the potential to produce serious injury or death due to electric shock. Electric drive systems on commercial vehicles can operate at voltages as high as 800 volts, both AC and DC, and can produce peak currents as high as 100 amps, which make contact with high voltage components even more dangerous.

High Voltage Cables

Visible orange cables are another indication that a vehicle has a high voltage system. That is because there is a voluntary Society of Automotive Engineers, or SAE, recommended practice that specifies that all high voltage cables have an orange outer covering. While voluntary, this practice has been adopted by virtually all manufacturers.

Until next time, work hard, stay safe & live inspired.

The Benefits of Electrolytes and Why Firefighters Should Drink Them

Hydration is an essential factor for firefighters all around. According to research, hydration is vital for overall health and wellness and your performance, along with recovery. The human body is made up of 66 to 70 percent water; through sweat, breathing, and bodily waste, it will lose around 35 to 90 ounces of water. During normal physical activity, however, the body could lose an additional 8 to 16 ounces of water. Firefighters, on the other hand, lose approximately 50 to 70 ounces of water in only 30 to 45 minutes during firefighting activity, five times higher than normal physical activity. The National Academies of Sciences, Engineering, and Medicine determined that an adequate daily fluid intake is about 15.5 cups (3.7 liters) of fluids for men and about 11.5 cups (2.7 liters) of fluids a day for women. These recommendations cover fluids from water, other beverages, and food. About 20 percent of daily fluid intake usually comes from food and the rest from drinks.

With all of this being said, is this enough for firefighters when performing high intensity work in full PPE in training and on the fire ground?

Let's take a look at the benefits and needs of incorporating electrolytes into your hydration especially when you're on shift at the firehouse.

Our bodies lose electrolytes through sweat, those of which cannot be replenished by water. Yes, you may feel better after a nice bottle of water however you may not be fully recovered due to the loss of important nutrients found in electrolytes.

But what makes electrolytes so essential, you ask? Let's find out.

For starters, electrolytes are essential minerals found in food and fluids, with a few of them being produced by our bodies naturally. Our bodies are designed to dissolve these minerals through blood, sweat and urine turning them into positive or negative charged ions which are vital for us to carry out normal body processes. Of these processes would be regulating our pH levels, maintaining fluid balances, contracting muscles, and conducting nerve impulses that allow your cells to communicate.

There are seven common electrolytes are four essential electrolytes are bodies need in order to function properly.

Seven common electrolytes

  • Sodium

  • Potassium

  • Chloride

  • Magnesium

  • Bicarbonate

  • Calcium

  • Phosphate

Four essential electrolytes

  • Sodium

  • Potassium

  • Chloride

  • Magnesium

The four essential electrolytes all play a role in proper body functioning from healthy digestion to regulating blood pressure and while they contribute to the same processes in the body function, all have unique properties that play a role in this process.

So, before we can discuss why these four are consider essential, we must first understand what these four are.

Sodium

Sodium play a pivotal role in maintaining the bodies extracellular fluid (ECF) volume and regulating blood pressure. Across our cellular membranes, sodium influences the water movement around these membranes and when the sodium levels change as does our osmotic pressures. This pressure can be thought of as the pressure that would be required to stop water from diffusing through a barrier of osmosis. Basically stating, it is how hard the water will "push" to get through the barrier in order to diffuse to the other side. In other words, "where sodium goes, water flows".

These changes induced by sodium will affect how water moves intra and extracellular compartments, like blood. Therefore resulting in an increase or decrease in plasma volume (part of ECF) and blood volume which can raise or lower blood pressure.

Potassium

Potassium is the partner to the electrolyte mentioned above, sodium. These two work together to maintain fluid volume in and out of your cells. As sodium is found in the extracellular fluid, potassium is found mostly in the intracellular fluid and is one of the most abundant mineral in our body.

The concentration of potassium in the ICF is around 30 times higher than outside your cell forming an electrochemical gradient for potassium and its partner sodium to work together to maintain. The electrochemical gradient is responsible for muscle contractions.

Without the proper levels of potassium in our body, our muscles produce weaker contractions along with possible muscle fatigue or severe muscle cramps.

Magnesium

Every cell in our body has the electrolyte magnesium. In fact, nearly 60% of it lives in our bones, with the rest found in fluids, tissues, and muscles. The importance of magnesium is that it is a help molecule that contributes to over 400 enzymatic reactions throughout our body, such as:

  • Converting food into energy

  • Regulating muscle and nerve functions

  • Contracting muscles

  • Regulating blood pressure and blood sugar

  • Building proteins

The functions of magnesium may seem repetitive to sodium and potassium but it is important to note, many of the electrolytes will work together to ensure the body is running how it should.

One of the main functions of these electrolytes working together is producing and metabolizing adenosine triphosphate, otherwise known as ATP - the body's primary energy source.

Chloride

Chloride is a negatively charged ion found in both intra cellular (ICF) and extracellular fluids (ECF). It is the second most abundant mineral found in the body. The function of chloride in the body is maintaining acid-base balance also known as  pH balance, aiding in digestion and aiding in water movement between fluid compartments in the body.

Chloride plays a pivotal role in proper digestion. It is a component to stomach acid, also known as hydrochloric acid (HCI). HCI jumpstarts our digestive process by activating gastric enzymes.

Now that we in short, covered the four essential electrolytes. We need to know WHY they are essential.

In the simplest terms, they keep your body in balance - in homeostasis. By having balanced electrolytes, it will help with chemical reactions and maintaining proper hydration along with intracellular and extracellular fluids that protect our cellular function. By keeping these electrolytes in balance we are also doing the following:

  • Keeping pH levels balanced

  • Transporting nutrients into our cells

  • Removing waste from our cells

  • Supporting muscle function

  • Supporting nervous system function

  • Regulating blood pressure

Electrolytes are essential for optimal body functioning and why maintain proper hydration prior to and after training and work on the fire ground. To reestablish a healthy balance in the body, it is important to replenish the nutrient that is lost though our sweat and bodily fluids on the job.

In order to work and perform at your optimal level, it is essential to keep electrolytes in your carry bag when on shift. A dehydrated firefighter is a unless firefighter. 

Until next time, work hard, stay safe & live inspired

Remembering Lieutenant Nathan Flynn

In the early morning of July 23, 2018, at approximately 0200hours, Howard County Department of Fire and Rescue Services was dispatched to lightning-caused structure fire in a single-family residence in Clarksville, Maryland.  

Shortly after arriving on scene, Lieutenant Nathan Flynn and his crew were advancing a hose line into the structure when the floor collapsed.  A Mayday was initiated around 0220hours by Lt. Flynn and another member of the crew. All of the crew members were rescued after about 20 minutes in burning basement at approximately 0245hours. 

Lt. Flynn was transported to the hospital but did not survive his injuries.  The cause of death was multiple injuries. 

He was the first line of duty death in the history of Howard County. 

Incident Location: 7000 Block of Woodscape Road, Clarksville, MD (U.S. National Grid: U.S. National Grid: 18S UJ 34363 39282 (DD: 39.187, -76.918)) 

Lessons Learned as per NIOSH 

  • Fire departments should ensure that crew integrity is properly maintained by visual (eye-to-eye), direct (touch), or verbal (voice or radio) contact at all times when operating in an immediately dangerous to life and health (IDLH) atmosphere. The intent is to prevent firefighters from becoming lost or missing

  • Fire departments should ensure incident commanders conduct a detailed scene size-up and risk assessment during initial fireground operations and throughout the incident including Side Charlie

  • Fire departments should develop and implement a standard operating procedure/guideline (SOP/SOG) to identify below-grade fires and ensure that appropriate tactical operations are implemented

  • Fire departments should ensure that a deployment strategy for low-frequency/high-risk incidents is developed and implemented for large area residential structures with unique architectural features

  • Fire departments should ensure that incident commanders develop an incident action plan (IAP) that matches conditions encountered during initial operations and throughout the incident

  • Fire departments should ensure that critical incident benchmarks and fire conditions are communicated to incident commanders throughout the incident. This is accomplished with effective fireground communications

  • Fire departments should have a procedure to ensure all members operating in the hazard zone have their radios on the designated radio channel

  • Fire departments should ensure all members and dispatchers are trained on the safety features of their portable radio, particularly the features useful during a Mayday

  • Fire departments should develop a process to prevent task saturation of incident commanders during multi-alarm incidents

  • Fire departments should ensure that the member assigned to the resource status and situation status function is not given other duties during an incident

  • Fire departments should develop a formal training program that defines the job duties and functions for staff aides, incident command technicians, or staff assistants

  • Fire departments should ensure incident commanders maintain control of situation status, resources status, and communications to ensure the completion of tactical objectives

  • Fire departments should incorporate the principles of Command Safety into the incident management system during the initial assumption of command. This ensures that strategic-level safety responsibilities are being incorporated into the command functions throughout the incident

  • Fire departments should review and/or develop SOG/SOPs to ensure that water supply is established during initial fireground operations, particularly in areas with limited or no hydrants

  • Fire departments should ensure adequate staffing and deployment of resources based on the community’s risk assessment

  • Fire department should periodically review and, if necessary, revise their SOP/SOG on the deployment of rapid intervention crews (RICs)

  • Fire departments should use resources from the National Institute of Standards and Technology (NIST), Underwriter’s Laboratories (UL) Fire Safety Research Institute (FSRI), and the International Society of Fire Service Instructors (ISFSI) to develop and revise operational procedures on fireground tactics and provide training in fire dynamics in structures for all firefighting staff

  • Fire departments should consider having all members carry a wire cutting tool  

We remember… 

Lieutenant Nathan "Nate" Flynn, 34, Howard County Department of Fire and Rescue Services

Electric Vehicle Fire Considerations for the First Due Engine Company

Automotive technological advancements have evolved drastically over the years. Modern amenities of connectivity are found is every new car being brought onto the market today. Social media apps, real time traffic and weather updates to cameras not just for backing up but also for covering multiple blind spot areas of the car. Although the biggest advancement and great challenge for firefighters is in the invention of electric vehicles (EV).

Firefighters must be aware of the dangers of these vehicles and have steps in place when responding to vehicle fires involving electric vehicles. For purposes of this article, we are going to outline steps to take when responding to an electric vehicle fire as the first arriving engine company.

Secure a Water Supply

As any well-trained engine company, the first thing that must happen is to secure a water supply immediately upon arrival. This is a crucial step in a meaningful knock on the fire. When compared to an internal combustion vehicle (gas fueled), an electric vehicle can take up to ten times the amount of water to cool or extinguish.

Let's think about this. An internal combustion vehicle would normally take 500-1000 gallons of water to cool or extinguish while an EV would take a minimum of 10,0000 gallons of water alone to extinguish or cool the battery. Reports have shown that it has taken 30,000 - 40,000 gallons of water to do such fire suppression on EVs. 

Up to 150 000 liters of water needed to put out a fire in an electric car | CTIF - International Association of Fire Services for Safer Citizens through Skilled Firefighters

Once a water supply is established, the next best option is to treat this like a motor vehicle extrication and if possible, stabilize the car and initiate any victim removes if required. The silent movement of these vehicles could cause them to roll and cause for other hazards putting firefighters at higher risks of injuries from the moving vehicle.

Handline Selection

Due to the naturae of these vehicles and the amount of water needed to either cool or extinguish the fire, it is best to either stretch a 2 1/2-inch handline or if staffing permits, pull multiple 1 3/4-inch handlines. As suppression team(s) approach the  vehicle, it is important to utilize the reach of the straight stream of the nozzle and to take note of the reaction the vehicle is having with the water. The initial application of water may cause a flare up of fire due to the combustibles within the EV.

Locate the Battery

Upon extinguishment of the main body of fire, it is imperative that firefighters quickly locate and identify the location of the battery, and this is important for monitoring signs of thermal runaway using a thermal imaging camera (TIC), including: 

  • Identify the heat signature present

  • Vapors escaping from the battery pack

  • Listen for popping sounds from the battery pack

  • Locating visible fire around the battery pack 

*Note, the thermal runaway temperature for lithium-ion batteries is approximately 176 degrees Fahrenheit or 80 degrees Celsius. Beyond this, the risk of chemical reactions leading to thermal runaway increases drastically. The maximum temperature during thermal runaway can reach greater than 300 degrees Celsius or 572 degrees Fahrenheit.

If any of these signs are identified, the battery pack should begin to be cooled and performed in such manner: 

  • The stream from the hose line should be directed to one area on the battery pack and applied for 3 to 5 minutes

  • After the 3 to 5 minutes, firefighters should assess the battery again for thermal runaway and the items listed above.

  • Should the signs of thermal runaway still be presentable or have seemed to be found on a new area of the battery, the stream should be again applied for another 3 to 5 minutes, followed by another assessment of the battery pack.

  • This process should be repeated until the pack is no longer showing any elevated temperatures.

Monitor the Battery 

After fire suppression team(s) have cooled the or extinguished the battery and all hot spots on the battery have cooled, it is best for an engine company to remain in place with an established water supply still in place for at least 30 minutes before the EV is moved from the hot zone.

Key definitions to take note of:

Thermal Runaway

Thermal runaway occurs when a lithium-ion battery becomes overheated and is often triggered by overcharging, a short circuit or other cell stress. A chain reaction in the cell that generates gas is triggered by excess heat. This can spread to the rest of the battery pack if not mitigated, which can cause other cells to overheat and then decompose. The runaway causes the release of flammable gasses as it takes hold and the battery cells break down. 

Lithium-ion Battery

A lithium-ion (Li-ion) battery is an advanced battery technology that uses lithium ions as a key component of its electrochemistry. During a discharge cycle, lithium atoms in the anode are ionized and separated from their electrons. The lithium-ions move from the anode and pass through the electrolyte until they reach the cathode, where they recombine with their electrons and electrically neutralize.

 As the fire service studies and investigates the complexity of electric vehicles fires, it is imperative that we continue to remain diligent when responding to EV fires and keeping up with the everlasting changes of how to approach and attack fires involving electric vehicles.

Until next time - work hard, stay safe & live inspired.

EV Rescue

https://autorescueapp.com/index.html

NFPA

https://www.nfpa.org/education-and-research/emergency-response/emergency-response-guides#aq=%40culture%3D%22en%22&cq=%40taglistingpage%3D%3D(%22EV%20Guides%22)%20%20&numberOfResults=12&sortCriteria=%40title%20ascending

When to Detach from the Plan

In theory, our strategies and tactics for our incident action plan are developed based on our 360-degree size-up. In reality, our strategies and tactics of our incident action plan are developed based on many variables - the pre-incident size-up, the alarm size-up, the on-scene size-up and the post-incident (after action review) size-up. All these variables are covered in chapter 3 of my book, "The 5-Tool Firefighter" in greater detail. For purposes of this article, I am highlighting them for other purposes.

The pre-incident size-up

 The pre-incident size-up is the first and best place to begin putting our IAP together by collecting as much important and relevant information of the structure as we possibly can and therefore beginning to build our "gameplans" and try them out in training. During this size-up, we can locate and note the following:

  1. Construction type

  2. Interior space size

  3. Containment areas

  4. Stairwells and elevators

  5. FDC hookups

  6. Solar Panels

Note: variables change based on the type of construction and type of occupancy you are pre-planning. These six items are only a sample of what we could look to identify during a pre-planning.

The alarm size-up

During the alarm size-up this is where firefighters and fire officers should start considering the variables taken during the pre-incident size-up. On the way to the alarm, things to look into are as follows:

  1. Location of the structure

  2. Type of occupancy

  3. Current apparatus staffing

  4. Weather conditions and time of day (loosely)

  5. Apparatus placement (think water supply/aerial operations)

These areas will lead into building the strategies and tactics for our IAP for this particular alarm. Now comes the on-scene.

The on-scene size-up

This is where the pre-planning and alarm size-ups are put to work. All our work identifying key areas of consideration and training are now put to the test. In reality, it is where we are provided with much more information specific to the alarm, confirming our variables during the alarm size-up, such as building construction, type of occupancy and location.

 Here is where more in-depth size-ups will take place not only at the command level but at each company level. Firefighters of truck and engine companies will now begin going inside the structure and taking note of the area under a different light and different conditions and relaying their findings back to the incident commander. This information being done at the company level will now allow the IC (incident commander) to make fire ground decisions that’s are prioritized for a safe and efficient outcome. This process continues until command is terminated.

Post-incident size-up

Once we've returned to the station and cleared up, it is imperative that we begin to discuss what went right and wrong on the incident, no matter the severity of the incident. This helps firefighter and fire officers strive to improve on their strengths and weaknesses of their job and strive to be as successful as possible.

Things to consider:

  1. What did we expect to happen?

  2. What actually happened?

  3. What went well and why?

  4. What can we improve upon and how? 

Looking at these four areas of size-up, we need to understand one thing. Our incident action plan that is designed to assist is can also hurt us. Well, how is that possible? We have pre-planned, sized-up on alarms, trained on scenarios for this type of occupancy, we did everything? What would hurt us?

What could hurt us is by sticking to the script of the IAP. What do I mean by that? Unforeseen circumstances and confirmation bias.

The outcome of the incident is initiated in our thought process before we develop any strategies or tactics of the incident. In order to develop strategies and tactics we first must identify our outcome. Makes total sense right? We cannot plan for an outcome we do not have in mind.

Our confirmation bias also agrees but here is the caveat. We cannot identify areas of concern if we simply go off an incident action plan without detaching ourselves from the plan for a moment. Meaning, we use our IAP as a guide but also take the time to look around for key areas that we are predisposed to instantly ignore.

Here is an example. 

We prepare our alarm size-up and look at the time of day. For example, Engine 2 is responding to a fire alarm activation at 234 Sesame Street on a Tuesday at roughly 1400 hours. It is a 2-story residential wood frame structure and normally at this time the family is either working and/or at school. 

Initially we are thinking this could be a faulty smoke detector activation or maybe someone is home and it's burnt food on the stove. However, upon arrival we see no signs of "life" at the residence. There are no cars in the driveway or at the curb and no homeowner waiting for us. Right here, our confirmation has proven correct. No one is home and a faulty detector went off. 

We immediately considered that because of the time of day with no activity at home upon arrival and the lack of cars visible to us, it must appear no one is home. 

Now let's detach from that mindset for a moment. 

We automatically assumed based on the time of day and day of week no one would be home however, that simply cannot be the case. To overcome confirmation bias, we need to loosely take time of day into account and assume every response has occupants on scene. Having a rough idea of who might be home is good to have but it cannot be written in stone and here's why. 

A residential structure could with an attached or detached garage could have the homeowner’s car parked inside (off-day or working from home) or the car could be for all intents and purposes, at a shop getting work done.  

To go further into the example here is more details. The engine company officer decides to DETACH from the initial mindset and dispatch and peak around the exterior of the structure that has a 6-foot privacy fence around the side yard and into the backyard and notices black smoke coming from the basement windows on the "C" side (Charlie side ) of the structure after entering through the fence gate. 

We've identified two areas of concern here. One, we disregarded the confirmation bias of time of day that the potential of no one is home and we identified an unforeseen circumstance based on the initial dispatch of the alarm.  

By detaching from the plan for a moment and taking a step back to question and prove out your initial mindset can oftentimes be the difference between a reactive approach or a proactive approach. The IAP is a great tool to have although we must ensure we are always critically thinking on scene and not simply going through the motions.

Until next time - work hard, stay safe & live inspired.

Remembering the Southwest Inn Motel Fire - Houston, TX

May 31, 2013 was the deadliest day in the history of Houston Fire Department. The Southwest Inn fire killed four Houston Fire Department members, injured many others with one additional firefighter who lost his life due to his injuries a few years later.

The Structure

The Southwest Inn Motel which was a well-known motel for many decades in the Houston area was located at 6855 Southwest Freeway in Houston, Texas. The property included the motel itself, with restaurant and bar spanning over 26,000 square feet. The layout consisted of the restaurant and bar being a single-story structure that was interconnected to the two-story structure that housed the motel's lobby, offices, banquet halls and meeting rooms. In addition to this facility, the property also housed seven individual two-story buildings of motel guest rooms, none of which were connected to the main interconnected building where the fire took place.

The motel was constructed of primarily wood-frame construction consisting of lightweight construction materials such as lightweight truss and combustible roof decking. The building did not contain a fire sprinkler or automatic fire alarm system. The one notable characteristic of this structure was the extruded concrete interlocking roof tiles over asphalt shingles used for the front-facing slopes over the banquet and restaurant areas.


The Incident

At 12:07PM, the Houston Fire Department was dispatched to the Southwest Inn for a reported fire. Engine 51 was located less than a mile from the motel and responded moments after the initial dispatch.

During their response in, Engine 51 (E51) officer reported heavy smoke visible and from there an immediate request by the Office of Emergency Communication to dispatch a working fire. Additional units reported dark grey and brown smoke coming from the structure will enroute to the scene.

Three and half minutes later upon arrival, E51 reported heavy smoke showing from the attic of the restaurant and will begin an offensive fire attack with a 2 1/2-inch line. This line was the rear preconnect from E51.

The district chief (D68) arrived on scene moments later and established command. The IC's first order was E51 evacuate the building because the operate of E51 advised the engine was down to a quarter tank of later. Engine 68 then arrived on scene and laid two 4-inch supply lines from E51 to a hydrant east of the structure and E51 from there was able to establish a water supply. E51's crew was then able to re-enter the structure with the back-up crew coming from E68 with another 2 1/2-inch line.

A fourth due engine company - Engine 82 was on scene advancing an 1 3/4-inch hoseline to the front door that was also entered by E51 when the roof collapsed occurred.

Within 12 minutes of Engine 51 (e51) arriving on scene and 15 and a half minutes of the initial dispatch the roof of the restaurant had collapsed. The captain of Engine 51 was at the front door during the collapse and pushed out of the building. The captain of Engine 82 called a "Mayday" and rapid intervention crew operations were initiated by Engine 60.

Due to the initial collapse of the roof and during the RIC operations taking place, a secondary wall collapsed occurred injuring several firefighter of the RIC team. The crew continued their efforts in located and removing the trapped firefighters. The captain of E68 was located and removed from the structure and transported to a local hospital. The engineer of E51 was removed from the structure as well however later died at a local hospital.

The search continued on for the captain of E51 and two remaining firefighters from E68. Approximately two hours had passed after the initial roof collapse and the body of the captain from E51 was located. The captain was found on top of the restaurant roof debris and the two missing firefighters from E68 were discovered underneath the debris. All three were pronounced dead at the scene.

Factors

• Unreported fire burning for 3 hours

• Delay in notifying the fire department

• Building construction

• Wind driven fire

• Scene size-up

• Accountability

• Fireground communications

• Lack of fire sprinkler system

Key Recommendations

• Based upon fire department procedures, the strategy and tactics for an occupancy should be defined by the organization for fire-fighting operations. The Incident Commander should ensure that the strategy and tactics match the conditions encountered during initial operations and throughout the incident

• Fire departments should review and update standard operating procedures on wind-driven fires which are incorporated into fireground tactics

• Fire departments should integrate current fire behavior research findings developed by the National Institute of Standards and Technology (NIST) and Underwriter’s Laboratories (U.L.) into operational procedures by developing standard operating procedures, conducting live fire training, and revising fireground tactics

We Remember…

Captain Matthew Renaud, 35, Engine 51

Engineer Operator Robert Bebee, 41, Engine 58

Firefighter Robert Garner, 29, Engine 68

Probationary Firefighter Anne Sullivan, 24 Engine 68

Captain William "Iron Bill" Dowling, Engine 68, retired after the incident and passed away on March 7, 2017 due to injuries sustained from the incident.


The Importance of the 360 Size-Up

The importance of performing a 360 size up makes a huge difference in the operation of a structure. Keep in mind size up can be performed by simply walking around your first due area and checking out new construction. Let’s look at some simple factors I came across in a new residential community.

Picture #1

  • Two story wood frame single family home

  • Appears it could be balloon frame (although weird for new construction)

  • Only one door is in plain sight

  • Bottom window of the 1/2 corner is a bit raised appearing there may be a basement level or storage area below

Picture #2

  • House is actually a three story residential

  • Basement is designed to be fully furnished

  • Basement level could possibly be used as an apartment (could cause a hazard if the stairway between the basement and first floor is illegally blocked for privacy)

  • Two additional means of egress located off the first floor balcony on the #2 side and the basement level door

  • From the rear it’s clear it’s not balloon frame

Again, just a few small factors to hit on. Do you notice anything else?

Remembering Captain Mike Goodwin

Philadelphia Fire Department Ladder 27 was dispatched as the Rapid Intervention Team also known as RIT to a structure fire at 748 South 4th Street in Philadelphia, PA on the evening of April 6, 2013. The fire began in the basement of a fabric store which had extended to the upper floors of the three story store front structure with apartments above. 

Captain Mike Goodwin was the officer in charge of Ladder 27 for the shift. Upon arrival, Ladder 27 RIT company staged their equipment near the command post and the IC (Incident Commander) assigned them to the roof of an adjacent structure to perform ventilation operations. It was at this time, Captain Goodwin reported to command there was heavy smoke conditions coming from the exposure they were shortly going to be operating on. Donned in full PPE w, Captain Goodwin fell 20 feet onto the roof of the building and shortly after fell through the roof into the fire building. 

Firefighters on scene reported this fall to the IC and rescue operations were quickly put into place in attempts to rescue Captain Goodwin. Due to limited access to the roof area and fire conditions, access was limited. During rescue efforts, firefighters breached an exterior brick wall to gain access to his location where he was removed from the structure and transported to the hospital. Additionally, Firefighter Andrew Godlinski was injured while attempting to rescue Captain Goodwin following the collapse before a second floor roof and two walls collapsed.

Captain Mike Goodwin of Ladder 27 was pronounced dead at the hospital due to what was listed as multiple blunt force injuries. He was posthumously promoted to Battalion Chief. 

Captain Goodwin is survived by his wife and two children. 

We Remember…

Captain Mike Goodwin, age 53, Philadelphia Fire Department, Ladder 27

Understand the Cause and Effect of Burnout

Anyone who has listened to any podcast I'm on or seen me speak in person has heard me say, "To bring our A-game, we have to be on our A-game mentally. Burnout in first responders has been witnessed for years, but it was taboo to discuss due to the stigma of being unfit for duty. Fast forward to 2023, burnout is being discussed more often. We already know burnout is terrible, and the job can cause it, but what aspects of the job lead to burnout? More importantly, what can we do to lessen the blow of burnout, if not prevent it overall?

I created a short survey with questions about the participants' personal and work lives. There were 75 participants in the following areas: fifty-two firefighters, twelve EMS, two Law Enforcement, and nine classified as other, including 911 dispatchers, mental health crisis workers, and ER Nurses.

It is essential to highlight that all participants noted that their work has impacted their personal lives. When participants were asked what they felt the biggest morale killer was for their department, 57.3% identified it as leadership. Other factors included staffing at 20% and policies at 6.7%. Shockingly, 43.3% of individuals found that they lacked access to professional support at work. Participants were also asked if they find it difficult to go to work, which 31.1% agreed to. An overwhelming amount of individuals (64%) reported feeling underappreciated or undervalued at work. These statistics call into question how these numbers are impacting someone's livelihood. Out of the 75 participants, 64% of individuals found themselves to be more irritable or losing patience with others. We must then question how the patience of workers impacts their quality of work with others, whether colleagues or patients. 

When discussing personal lives, 29.7% of individuals reported they felt they were withdrawing from friends and family. I was curious as well if participants noticed an increase in using drugs or alcohol more frequently, which 29.3% of individuals agreed to an increase in substance use. I also proposed the question of whether individuals feel less motivated to do things they enjoy, and a shocking amount of 58.6% of individuals agreed. When individuals lose motivation for something they enjoy, their work ethic declines, often because they are too burned out to use their regular leisure activities. The word burnout holds weight to it in this line of work, but the question must be asked, "Do you feel burned out from your job?". In response to this question, 52% of individuals agreed or strongly agreed. As a leader, I questioned what departments can do to relieve some of the feelings and concerns that each individual expressed in the survey. Some responses on how to improve morale within a department included team building (26.7%), more frequent input on department policies (29.3%), and more frequent meetings with leadership (25.3%).

All three responses can prove effective, but how do you implement them? Team building is a favorite tactic of mine. What exactly is team building? Team building is an ongoing process that helps a work group evolve into a cohesive unit. The team members share expectations for accomplishing group tasks and trust, support, and respect one another's differences. A leader can hold team building on shift or off shift. One of the best techniques to do on shift is hands-on training. I've often found that morale is high when we hold department training events in my department. What about taking team building away from work? Group outings to sporting events, concerts, days on a golf course, or even a night out can boost morale. It encourages your crew/workers to socialize about things other than work, creating a more relaxing environment and allowing them to understand each other personally. 

While it's often challenging to fit in team building, more frequently due to busy schedules, calls, meetings, etc., we must find the time to avoid losing the most essential piece of our departments: our crew/workers. When individuals feel appreciated, valued, and refreshed, they are more likely to be on their A-game mentally and physically, which society relies on us for. A good leader must understand burnout and feel comfortable approaching our crew/workers and asking, "How can I support you?" or "Are you doing okay?". Sometimes, while this is not an easy question to ask, and we may not hear easy answers, it's how to ensure that workers/crew members feel listened to and supported. Overall, we must maintain the insight into how burnout affects the livelihood of our workers/members. 

Holding quarterly individual or small-scale meetings with your crew can be an easy way to maintain the insight. These meetings can often be utilized as a way to get ideas for the workplace but also to assure your firefighters, EMTs, police officers, etc., are doing okay both at work and home. Fire officers and other leaders say, "Their home life is not my concern." I can't entirely agree. The issue is not the leader's problem; however, its effect on the individual is an issue for the leader. You must ensure your employee prevents home issues from affecting decision-making on an emergency scene. Most importantly, if it affects them, take care of them; humans are allowed to have bad days and should not be punished. 

This article is just a tiny look into the effects of burnout in the workplace. Whether responding to a structure fire, heart attack victim, active shooter, answering and or dispatching 911 calls, assisting someone during a mental health crisis, or rushing patient to patient in an emergency room, our communities expect superhumans when they need help. It's our job as leaders to provide the best team for those in need and provide our first responders with the support to ensure they are physically and mentally on their A-game. I like the term superhuman. First responders are remarkable, and the mental and physical stress their bodies can handle is a super-hero quality. A better way to write it is superHUMAN, ensuring we acknowledge that even being considered "super," we are still human.



The Size-Up

Let’s Talk Size Up! 

Talk. If you just talk is anyone listening? Well, they should be. But if you don’t send the message properly, not only will they not listen, but they will also not get the picture you are painting. So, what is size up? To me, it is much more than just talk. It is giving others the image you are seeing right now. It is giving them vital information about whatever the incident is at hand. Let’s just base this conversation on House fires. What are you looking for? Is it just the building? NOPE! There is so much more. What is the exterior telling you about the possible battles you may face? I recently read a post from OJ Kolodziej, a Fire Captain from Birmingham AL and the owner at Magic City Truck Academy, a Fire based training company similar to mine. If you don’t follow him, you should!  But he made a recent post on size up. It was a short post about vehicle size up at a house fire!  Yup vehicle size up. This simple method will help you find clues of what may be inside this home.  How? Glad ya asked, look into that vehicle instead of running past it!! Well, if you have a visible victim then yeah go past it. For the sake of this article, there are no visible victims. Look at the car, are there any car seats or booster seats, how many? What are the license plates? Handicap, or is there a handicap tag hanging on the mirror? What is the general condition of the car? Is it in shambles and full of stuff and things, this may give insight of the interior of the home. Is the hood warm? What does the back window have for stick figure stickers?? A vehicle can tell you a lot!  


Photo by Ryan Johnston, training burn Greenville Maine 

Now we have looked at the vehicle, what does the door yard look like? SQUIRREL!! Did you notice I didn’t talk about time of day? Yeah, I’m not going to. Now several years ago I might have. But as our world changes so does our size up factors. The lack of or having a vehicle in the driveway at any point day or night is not really a reason (in my opinion) to search more or less. Today’s culture has taught me that it doesn’t matter what time of day it or if a vehicle is present or not that I should not base my search on either of these items. They may direct me towards a targeted search, but not swaying my decision to search. With COVID and just the amount of people working from home, we are likely going to find victims regardless of the time of day.  

OK back to my original thought. You have taken note of the vehicle, and you are likely doing a 360.  What are you seeing? Building type, number of floors, is there the same number of floors in the front as there are in the rear? What are you smelling? What are the conditions? Smoke, Fire,  Nothing? If you do have smoke or fire, from where and how much? You can even get into the smoke volume, color, speed and density. Do you know what your water source is going to be?  What mode of attack will you be in? Offensive, Defensive, Investigation? Once you announce this info over the radio to the incoming units establish command. I am the worst person for a stationary command, but it is important. So, announce the location of command, rely on you officer staff to relay pertinent information to you as needed and once a command post is established stay there, if possible, see what I did there? In the fire service Never and Always are two bad words. The thing about size up is that it is always on going. As the incident changes the resources that you may need or not need changes. I try to reassess the incident every 10 to 15 minutes in the first hour.  After that the incident will dictate my time line. This article is no means the end all to size up. It is  just some of the things I do. Hopefully this will trigger you to look at how you size up your fires and  as always, if you have any questions or comments please reach out! I really enjoy it when we have  feedback, I learn so much from all of you, either when I am out strutting or if it is through this article sparking conversations. SO, how do you size up?  

Ryan Johnston

Owner, Maine-Iac Training

www.maineiactraining.org

ryan@maineiactraining.org